Development of a Synergistic Approach to Study Irradiated Materials Using Coupled Experiments and Simulation - FY2018 final poster

Cynthia A Adkins, Assel Aitkaliyeva, Michael Tonks, Daniel M Wachs, Jacob Hirschhorn

August 2018

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Development of a Synergistic Approach to Study Irradiated Materials Using Coupled Experiments and Simulation - FY2018 final poster

Cynthia A Adkins, Assel Aitkaliyeva, Michael Tonks, Daniel M Wachs, Jacob Hirschhorn

August 2018

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Advancing Nuclear Energy

Development of a Synergistic Approach to Study Irradiated Materials Using Coupled Experiments and Simulation

Assel Aitkaliyeva^{1,2}, Cynthia Adkins¹, Daniel Wachs¹, Michael Tonks², Jacob Hirschhorn²

¹Idaho National Laboratory, ²University of Florida

Objective

- 1) develop experimental procedures to obtain the specific pre- and post-irradiation characterization data required for validation and uncertainty quantification of MARMOT models
- 2) understand the evolution of microstructure under transient irradiation conditions and its impact on properties for use with TREAT.
- 3) demonstrate the value of a coupled experimental and simulation approach on understanding critical thermal properties in a material of broad interest (the U-Pu-Zr system and its binaries)

 Technical Approach

Characterization Results

- Microstructure was observed with SEM, TEM and crystal structure determined with SAED patterns (as-cast vs. anneal at TREAT temperature)
- Phase transition temperatures and energies were measured
- Thermal conductivity was measured

DSC signal vs. Temperature (°C) for Pu-10Zr upon heating and cooling

Irradiation Characterization Modeling Thermal conductivity pattern Irradiation in MARCE Microstructural changes: rystallographic Information Phase transformations Precipitate Morphology Thermo-mechanical stresses Accurate Feature Shapes Correlation between thermal properties and microstructure Modeling thermal conductivity Modeling Results

Representative phases observed in the as-cast Pu-10Zr specimen. Scale

bar denotes 500

nm.

Representative
phases observed
in the annealed
Pu-10Zr
specimen. Scale
bar denotes 500
nm.

(a) 1st thermal
cycle of as-cast
material (b) 2nd
thermal cycle of
as-cast material
(c) 3rd thermal
cycle of as-cast
material (d) 1st
thermal cycle of
annealed
material

• Uses measured and published single phase transition temps to predict microstructure evolution with phase-field model

Phase Transition	x_U	x_{Pu}	x_{Zr}	T_{sim} [°C]	T_{ref} [°C]
$\alpha Pu \to \beta Pu$	0.00	1.00	0.00	125	125
$\beta Pu \rightarrow \gamma Pu$	0.00	1.00	0.00	214	215
$\gamma Pu \rightarrow \delta Pu$	0.00	1.00	0.00	320	318
$\delta Pu \rightarrow \delta' Pu$	0.00	1.00	0.00	460	463
$\delta' Pu \to \gamma U Pu Zr$	0.00	1.00	0.00	480	483
$\zeta U P u \to \eta U P u$	0.63	0.37	0.00	619	640
$\eta UPu \to \gamma UPuZr$	0.63	0.37	0.00	704	710
$\alpha U \to \beta U$	1.00	0.00	0.00	668	668
$\beta U \to \gamma U P u Z r$	1.00	0.00	0.00	776	776
$\delta Pu \to \gamma U Pu Zr$	0.00	0.40	0.60	631	630
$\alpha Zr \to \gamma UPuZr$	0.00	0.00	1.00	864	863
$\delta UZr \rightarrow \gamma UPuZr$	0.30	0.00	0.70	617	610

Technical Challenges

- New irradiation hardware design was needed to enable irradiation in TREAT – MARCH vehicle
- TREAT irradiation scheduled for year 2 of this project was delayed

MARCH vehicle w/ heated capsules

Pu – 30 wt% Zr U-20 wt% Pu-10 wt% Zr

Pu – 10 wt% Zr

<u>Publications</u>

- Phase Field Model for the Equilibrium Thermodynamics of U-Pu-Zr, Hirschhorn, Tonks, Aitkaliyeva, Adkins in review
- The evolution of the microstructure and thermal properties of Pu-10Zr fuels with temperature,
 Aitkaliyeva, Adkins, Hirschhorn,
 McKinney, Tonks in draft
- Thermal Conductivity of Pu-Zr alloys, Adkins, Aitkaliyeva, Hirschhorn, Tonks in draft
- 9+ presentations in conference proceedings

Harvest Strategy Result

The work completed for this LDRD has attracted interest from the NTRD program in FY 2019 to develop a new work package for separate effects testing

Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517